
Lmod Testing System

Robert McLay

March. 1, 2022

Lmod Testing System

I Testing philosophy in Lmod
I Goals of testing Lmod
I Hermes/tm basic operations
I Details of how an Lmod test works
I Future Topics

Lmod | March. 1, 2022 | 2

Alternative story

I How I used a testing tool I already had
I How to shoehorn the Lmod testing to use tm
I Why I’m using a system testing method, not unit tests.
I System tests came first for me, unit testing later.
I Lmod uses some unit tests as well.

Lmod | March. 1, 2022 | 3

Testing philosophy in Lmod

I Lmod’s success relies heavily on the testing system.
I Passing all the tests usually means a new version can be

released.
I I don’t think that anyone is using it beside Lmod (But it is very

useful)
I My philosophy is to test features in general
I Not to setup a torture test
I No way I can test every possible scenario.
I My imagination is not that good.

Lmod | March. 1, 2022 | 4

Goals of testing Lmod

I Test various features of Lmod.
I New feature won’t break old features.
I Test Lmod on Linux/MacOS, Lua 5.1 to 5.4
I Make development of Lmod easier.
I Add tests of new bugs ⇒ Don’t repeat them!

Lmod | March. 1, 2022 | 5

It is hard to test everything

I Testing Old data with new versions(Collections, spiderT.lua)
I One test (end2end) builds Lmod and tests the built version
I All other tests use the source code directly
I Special hacks to use configuration options.
I Environment variable are checked NOT configuration options

Lmod | March. 1, 2022 | 6

Hermes/tm Testing system

I Hermes is a group of tools to help with testing
I tm is the testing manager program.
I The main function of tm is to select tests and run them.
I Each test is independent!
I tm knows nothing about what is being tested.
I Must tell if test passed via special file (Lua file named t1.results)
I Three kinds of results

1. Passed: All steps passed
2. Failed: Did not produce a t1.results file
3. Diffed: Produced diffs between gold files and test result files.

Lmod | March. 1, 2022 | 7

tm flow

I tm searches for tests from the current directory down
I It is looking for files with the *.tdesc extension (testDir)
I Once all tests have been selected, it runs them all
I For each test directory a sub-dir tree is created.
I Typically: t1/<$TARG>-<date_time>-<uname

-s>-<arch>-<test_name>
I The above dir is the outputDir
I The test is run in $outputDir
I The generated bash test script is named t1.script
I The log of the run is t1.log
I The results file are t1.result and t1.runtime

Lmod | March. 1, 2022 | 8

Every project using tmmust have an
acceptance tool

I There must be an automatic way to decide a test passed.
I A numerical code can use an L2 norm.
I The new answer can be different but close w/ numerical codes.
I Lmod use diff on stdout and stderr between gold and test

results
I Filtering is required to deal with OS and file location differences
I To pass the filtered result must be the same.
I This is a major pain but it has been worth the effort.

Lmod | March. 1, 2022 | 9

Test files (*.tdesc)

I The testDescript is a table describing the the test
I Some special parameters are:

1. $(testDir): where the *.tdesc is located
2. $(projectDir): where Hermes.db is located (top of the project)
3. $(outputDir): where the test is run
4. $(resultFn): The name of the results lua file.

Lmod | March. 1, 2022 | 10

Lmod tests

I Uptil now this talk has been about tm
I Now lets talk about Lmod tests:

I Each test contains multiple steps
I Each step generates _stderr.### and _stdout.### files
I These are combined and filtered into err.txt and out.txt
I These file are compared with the gold files in $testDir
I Result file is generated.
I To pass all steps must be the same!

Lmod | March. 1, 2022 | 11

extension.tdesc
local testName = "extensions"
testdescript = {

keywords = {testName },
active = true,
testName = testName,

runScript = [[
. $(projectDir)/rt/common_funcs.sh
unsetMT; initStdEnvVars
export MODULEPATH_ROOT=$(testDir)/mf
export MODULEPATH=$MODULEPATH_ROOT/Core
rm -rf _stderr.* _stdout.* err.* out.* .lmod.d

runLmod --version # 1
runLmod avail # 2

combine _stdout.[0-9][0-9][0-9] -> _stdout.orig
cleanup _stdout.orig -> out.txt

combine _stderr.[0-9][0-9][0-9] -> _stderr.orig
cleanup _stderr.orig -> out.txt

wrapperDiff --csv results.csv $(testDir)/out.txt out.txt
wrapperDiff --csv results.csv $(testDir)/err.txt err.txt
testFinish -r $(resultFn) -t $(runtimeFn) results.csv

]],
tests = {

{ id='t1'},
},

}

Lmod | March. 1, 2022 | 12

$(projectDir)/rt/common_funcs.sh

I Common bash shell functions are in this file
I runLmod: runs the Lmod command
I runBase: base command (explained later)
I cleanup: Makes output generic (canonical?)
I initStdEnvVars: set standard env vars, cleans up my env
I unsetMT: remove moduletable from env

Lmod | March. 1, 2022 | 13

runLmod

runLmod ()
{

##
turn off file globbing if it is not already off
...

runBase $LUA_EXEC $projectDir/src/lmod.in.lua bash --regression_testing "$@"
eval `cat _stdout.$NUM`

##
turn on file globbing for users who want it.
...

}

Lmod | March. 1, 2022 | 14

runBase

runBase ()
{

COUNT=$(($COUNT + 1))
numStep=$(($numStep+1))
NUM=`printf "%03d" $numStep`
echo "===========================" > _stderr.$NUM
echo "step $COUNT" >> _stderr.$NUM
echo "$@" >> _stderr.$NUM
echo "===========================" >> _stderr.$NUM

echo "===========================" > _stdout.$NUM
echo "step $COUNT" >> _stdout.$NUM
echo "$@" >> _stdout.$NUM
echo "===========================" >> _stdout.$NUM

numStep=$(($numStep+1))
NUM=`printf "%03d" $numStep`
"$@" > _stdout.$NUM 2>> _stderr.$NUM

}

Lmod | March. 1, 2022 | 15

Cleanup for stderr

cat _stderr.[0-9][0-9][0-9] > _stderr.orig
cleanUp _stderr.orig err.txt

I Combine all stderr files into _stderr.orig
I Use the cleanup shell function to canonicalize err.txt output

Lmod | March. 1, 2022 | 16

Cleanup for stdout

cat _stdout.[0-9][0-9][0-9] > _stdout.orig
joinBase64Results -bash _stdout.orig _stdout.new
cleanUp _stdout.new out.txt

I Combine all stdout files into _stdout.orig
I Convert all base64 text into regular text
I Use the cleanup shell function to canonicalize out.txt output

Lmod | March. 1, 2022 | 17

Cleanup script

I converts local path names into “ProjectDIR”
I converts path to lua or sha1 to generic names
I Cleans up error msgs
I And many other fixes.

Lmod | March. 1, 2022 | 18

Cleanup script (II)

_stderr.orig:
===========================
step 8
/opt/apps/lua/lua/bin/lua /Users/mclay/w/lmod/src/lmod.in.lua bash --rtesting -
t avail
===========================
/Users/mclay/w/lmod/rt/avail/mf/Core:
PrgEnv
admin/
admin/admin-1.0

err.txt:
===========================
step 8
lua ProjectDIR/src/lmod.in.lua bash --rtesting -t avail
===========================
ProjectDIR/rt/avail/mf/Core:
PrgEnv
admin/
admin/admin-1.0

I Cleanup: _stderr.orig ⇒ err.txt

Lmod | March. 1, 2022 | 19

Deciding if a test passes

rm -f results.csv
wrapperDiff --csv results.csv $(testDir)/out.txt out.txt
wrapperDiff --csv results.csv $(testDir)/err.txt err.txt
testFinish -r $(resultFn) -t $(runtimeFn) results.csv

I wrapperDiff is a hermes tool that runs diff and generates
a csv file (results.csv)

I It also removes the Lmod version info from err.txt
I testFinish is another hermes tool that converts results.csv

into $resultFn
I Then tm reads $resultFn to decide if this test passes

Lmod | March. 1, 2022 | 20

Future Topics

I Write one new test.
I Explain how Mname object converts names into a filename.
I More internals of Lmod?

Lmod | March. 1, 2022 | 21

