
The decNumber C library

Version 3.37 – 22nd November 2006

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Table of Contents

Overview 1

User’s Guide 3
Example 1 – simple addition 5
Example 2 – compound interest 6
Example 3 – passive error handling 7
Example 4 – active error handling 8
Example 5 – compressed formats 10
Example 6 – Packed Decimal numbers 12

Module descriptions 13
decContext module 14

Definitions 16
Functions 17

decNumber module 20
Definitions 22
Functions 23
Conversion functions 23
Arithmetic functions 25
Utility functions 30

decimal32, decimal64, and decimal128 modules 33
Definitions 33
Functions 34

decPacked module 37
Definitions 37
Functions 38

Additional options 40
Tuning and testing parameters 41

Appendix – Changes 44

Index 49

Version 3.37 ii

Overview

The decNumber library implements the General Decimal Arithmetic Specification1

in ANSI C. This specification defines a decimal arithmetic which meets the requirements
of commercial, financial, and human-oriented applications.

The library fully implements the specification, and hence supports integer, fixed-point,
and floating-point decimal numbers directly, including infinite, NaN (Not a Number), and
subnormal values.

The code is optimized and tunable for common values (tens of digits) but can be used
without alteration for up to a billion digits of precision and 9-digit exponents. It also
provides functions for conversions between concrete representations of decimal numbers,
including Packed Decimal (4-bit Binary Coded Decimal) and three compressed formats
of decimal floating-point (4-, 8-, and 16-byte).

Library modules

The library comprises several modules (corresponding to classes in an object-oriented
implementation). Each module has a header file (for example, decNumber.h) which
defines its data structure, and a source file of the same name (e.g., decNumber.c) which
implements the operations on that data structure. These correspond to the instance
variables and methods of an object-oriented design.

The core of the library is the decNumber module. This uses a decimal number represen-
tation designed for efficient computation in software and implements the arithmetic
operations, together with some conversions and utilities. Once a number is held as a
decNumber, no further conversions are necessary to carry out arithmetic.

Most functions in the decNumber module take as an argument a decContext structure,
which provides the context for operations (precision, rounding mode, etc.) and also con-
trols the handling of exceptional conditions (corresponding to the flags and trap enablers
in a hardware floating-point implementation).

The decNumber representation is machine-dependent (for example, it contains integers
which may be big-endian or little-endian), and is optimized for speed rather than storage
efficiency.

1 See http://www2.hursley.ibm.com/decimal for details.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 1

Four machine-independent (but optionally endian-dependent) compact storage formats
are provided for interchange. These are:

decimal32 This is a 32-bit decimal floating-point representation, which provides 7 deci-
mal digits of precision in a compressed format.2

decimal64 This is a 64-bit decimal floating-point representation, which provides 16 dec-
imal digits of precision in a compressed format.

decimal128 This is a 128-bit decimal floating-point representation, which provides 34
decimal digits of precision in a compressed format.

decPacked The decPacked format is the classic packed decimal format implemented by
IBM S/360 and later machines, where each digit is encoded as a 4-bit binary
sequence (BCD) and a number is ended by a 4-bit sign indicator. The
decPacked module accepts variable lengths, allowing for very large numbers
(up to a billion digits), and also allows the specification of a scale.

The module for each format provides conversions to and from the core decNumber format.
The decimal32, decimal64, and decimal128 modules also provide conversions to and from
character string format (using the functions in the decNumber module).

Standards compliance
It is intended that the decNumber implementation complies with:

• the floating-point decimal arithmetic defined in ANSI X3.274-19963 (including errata
through 2001)

• all requirements of IEEE 854-1987,4 as modified by the current IEEE 754r revision
work,5 except that:

1. The values returned after overflow and underflow do not change when an
exception is trapped. This is because the IEEE 854 definition does not gener-
alize to the power and exp operations. Similarly, the criteria for underflow do
not depend on the setting of the underflow trap-enabler (the subnormal condi-
tion may be tested or trapped, instead).

2. The IEEE remainder operator (decNumberRemainderNear) is restricted to
those values where the intermediate integer can be represented in the current
precision, because the conventional implementation of this operator would be
very long-running for the range of numbers supported (up to ±101,000,000,000).

Note that all other requirements of IEEE 854 (such as subnormal numbers and –0)
are supported.

Please advise the author of any discrepancies with these standards.

2 See http://www2.hursley.ibm.com/decimal/decbits.html for details of the compressed
formats.

3 American National Standard for Information Technology – Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

4 IEEE 854-1987 – IEEE Standard for Radix-Independent Floating-Point Arithmetic, The Institute of
Electrical and Electronics Engineers, Inc., New York, 1987.

5 See http://grouper.ieee.org/groups/754/

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 2

User’s Guide

To use the decNumber library efficiently it is best to first convert the numbers you are
working with from their coded representation into decNumber format, then carry out
calculations on them, and finally convert them back into the desired coded format.

Conversions to and from the decNumber format are fast; they are usually faster than
even the simplest calculations (x=x+1, for example). Therefore, in general, the cost of
conversions is small compared to that of calculation.

The coded formats currently provided for in the library are

• strings (ASCII bytes, terminated by '\0', as usual for C)

• three formats of compressed floating-point decimals

• Packed Decimal numbers with optional scale.

The remainder of this section illustrates the use of these coded formats in conjunction
with the core decContext and decNumber modules by means of examples.

Notes on running the examples

1. All the examples are written conforming to ANSI C, except that they use “line com-
ment” notation (comments starting with //) from BCPL and C++ for more concise
commentary. Most C compilers support this; if not, a short script can be used to
convert the line comments to traditional block comments (/* ... */).

2. The header files and Example 6 use the standard integer types from stdint.h
described in the ANSI C99 standard (ISO/IEC 9899:1999). If your C compiler does
not supply stdint.h, the following will suffice:

/* stdint.h –– some standard integer types from C99 */
typedef unsigned char uint8_t;
typedef char int8_t;
typedef unsigned short uint16_t;
typedef short int16_t;
typedef unsigned int uint32_t;
typedef int int32_t;
typedef unsigned long long uint64_t;
typedef long long int64_t;

You may need to change these if (for example) the int type in your compiler does
not describe a 32-bit integer. If there are no 64-bit integers available with your

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 3

compiler, set the DECUSE64 tuning parameter (see page 42) to 0; the last two
typedefs above are then not needed.

3. One aspect of the examples is implementation-defined. It is assumed that the
default handling of the SIGFPE signal is to end the program. If your implementa-
tion ignores this signal, the lines with set.traps=0; would not be needed in the
simpler examples.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 4

Example 1 – simple addition

This example is a simple test program which can easily be extended to demonstrate more
complicated operations or to experiment with the functions available.

1. // example1.c –– convert the first two argument words to decNumber,
2. // add them together, and display the result

 3.

4. #define DECNUMDIGITS 34 // work with up to 34 digits
5. #include "decNumber.h" // base number library
6. #include <stdio.h> // for printf

 7.

8. int main(int argc, char *argv[]) {
9. decNumber a, b; // working numbers

10. decContext set; // working context
11. char string[DECNUMDIGITS+14]; // conversion buffer

 12.

13. if (argc<3) { // not enough words
14. printf("Please supply two numbers to add.\n");

 15. return 1;
 16. }
17. decContextDefault(&set, DEC_INIT_BASE); // initialize
18. set.traps=0; // no traps, thank you
19. set.digits=DECNUMDIGITS; // set precision

 20.

21. decNumberFromString(&a, argv[1], &set);
22. decNumberFromString(&b, argv[2], &set);
23. decNumberAdd(&a, &a, &b, &set); // a=a+b

 24. decNumberToString(&a, string);
25. printf("%s + %s => %s\n", argv[1], argv[2], string);

 26. return 0;
27. } // main

This example is a complete, runnable program. In later examples we’ll leave out some
of the “boilerplate”, checking, etc., but this one should compile and be usable as it stands.

Lines 1 and 2 document the purpose of the program.

Line 4 sets the maximum precision of decNumbers to be used by the program, which is
used by the embedded header file in line 5 (and also elsewhere in this program).

Line 6 includes the C library for input and output, so we can use the printf function.
Lines 8 through 11 start the main function, and declare the variables we will use. Lines
13 through 16 check that enough argument words have been given to the program.

Lines 17–19 initialize the decContext structure, turn off error signals, and set the work-
ing precision to the maximum possible for the size of decNumbers we have declared.

Lines 21 and 22 convert the first two argument words into numbers; these are then added
together in line 23, converted back to a string in line 24, and displayed in line 25.

Note that there is no error checking of the arguments in this example, so the result will
be NaN (Not a Number) if one or both words is not a number. Error checking is introduced
in Example 3 (see page 7).

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 5

Example 2 – compound interest

This example takes three parameters (initial amount, interest rate, and number of years)
and calculates the final accumulated investment. For example:

100000 at 6.5% for 20 years => 352364.51

The heart of the program is:

1. decNumber one, mtwo, hundred; // constants
2. decNumber start, rate, years; // parameters

 3. decNumber total; // result
4. decContext set; // working context
5. char string[DECNUMDIGITS+14]; // conversion buffer

 6.

 7. decContextDefault(&set, DEC_INIT_BASE); // initialize
8. set.traps=0; // no traps
9. set.digits=25; // precision 25

10. decNumberFromString(&one, "1", &set); // set constants
 11. decNumberFromString(&mtwo, "–2", &set);
12. decNumberFromString(&hundred, "100", &set);

 13.

14. decNumberFromString(&start, argv[1], &set); // parameter words
 15. decNumberFromString(&rate, argv[2], &set);
16. decNumberFromString(&years, argv[3], &set);

 17.

18. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
19. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
20. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
21. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
22. decNumberRescale(&total, &total, &mtwo, &set); // two digits please

 23.

 24. decNumberToString(&total, string);
25. printf("%s at %s%% for %s years => %s\n",
26. argv[1], argv[2], argv[3], string);

 27. return 0;

These lines would replace the content of the main function in Example 1 (adding the
check for the number of parameters would be advisable).

As in Example 1, the variables to be used are first declared and initialized (lines 1
through 12), with the working precision being set to 25 in this case. The parameter words
are converted into decNumbers in lines 14–16.

The next four function calls calculate the result; first the rate is changed from a per-
centage (e.g., 6.5) to a per annum rate (1.065). This is then raised to the power of the
number of years (which must be a whole number), giving the rate over the total period.
This rate is then multiplied by the initial investment to give the result.

Next (line 22) the result is rescaled so it will have only two digits after the decimal point
(an exponent of –2), and finally (lines 24–26) it is converted to a string and displayed.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 6

Example 3 – passive error handling

Neither of the previous examples provide any protection against invalid numbers being
passed to the programs, or against calculation errors such as overflow. If errors occur,
therefore, the final result will probably be NaN or infinite (decNumber result structures
are always valid after an operation, but their value may not be useful).

One way to check for errors would be to check the status field of the decContext structure
after every decNumber function call. However, as that field accumulates errors until
cleared deliberately it is often more convenient and more efficient to delay the check until
after a sequence is complete.

This passive checking is easily added to Example 2. Replace lines 14 through 22 in that
example with (the original lines repeated here are unchanged):

1. decNumberFromString(&start, argv[1], &set); // parameter words
 2. decNumberFromString(&rate, argv[2], &set);

3. decNumberFromString(&years, argv[3], &set);
4. if (set.status) {
5. printf("An input argument word was invalid [%s]\n",

 6. decContextStatusToString(&set));
 7. return 1;
 8. }

9. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
10. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
11. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
12. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
13. decNumberRescale(&total, &total, &mtwo, &set); // two digits please
14. if (set.status & DEC_Errors) {
15. set.status &= DEC_Errors; // keep only errors
16. printf("Result could not be calculated [%s]\n",

 17. decContextStatusToString(&set));
 18. return 1;
 19. }

Here, in the if statement starting on line 4, the error message is displayed if the status
field of the set structure is non-zero. The call to decContextStatusToString in line 6
returns a string which describes a set status bit (probably “Conversion syntax”).

In line 14, the test is augmented by anding the set.status value with DEC_Errors. This
ensures that only serious conditions trigger the message. In this case, it is possible that
the DEC_Inexact and DEC_Rounded conditions will be set (if an overflow occurred) so these
are cleared in line 15.

With these changes, messages are displayed and the main function ended if either a bad
input parameter word was found (for example, try passing a non-numeric word) or if the
calculation could not be completed (e.g., try a value for the third argument which is not
an integer).6

6 Of course, in a user-friendly application, more detailed and specific error messages are appropriate. But
here we are demonstrating error handling, not user interfaces.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 7

Example 4 – active error handling

The last example handled errors passively, by testing the context status field directly. In
this example, the C signal mechanism is used to handle traps which are raised when
errors occur.

When one of the decNumber functions sets a bit in the context status, the bit is compared
with the corresponding bit in the traps field. If that bit is set (is 1) then a C Floating-Point
Exception signal (SIGFPE) is raised. At that point, a signal handler function (previously
identified to the C runtime) is called.

The signal handler function can either simply log or report the trap and then return (and
execution will continue as though the trap had not occurred) or – as in this example – it
can call the C longjmp function to jump to a previously preserved point of execution.

Note that if a jump is used, control will not return to the code which called the
decNumber function that raised the trap, and so care must be taken to ensure that any
resources in use (such as allocated memory) are cleaned up appropriately.

To create this example, modify the Example 1 code this time, by first removing line 18
(set.traps=0;). This will leave the traps field with its default setting, which has all the
DEC_Errors bits set, hence enabling traps for any of those conditions. Then insert after
line 6 (before the main function):

1. #include <signal.h> // signal handling
 2. #include <setjmp.h> // setjmp/longjmp
 3.

4. jmp_buf preserve; // stack snapshot
 5.

6. void signalHandler(int sig) {
 7. signal(SIGFPE, signalHandler); // re–enable

8. longjmp(preserve, sig); // branch to preserved point
 9. }

Here, lines 1 and 2 include definitions for the C library functions we will use. Line 4
declares a global buffer (accessible to both the main function and the signal handler)
which is used to preserve the point of execution to which we will jump after handling the
signal.

Lines 6 through 9 are the signal handler. Line 7 re-enables the signal handler, as
described below (in this example this is in fact unnecessary as we will be ending the
program immediately). This is normally needed as handlers are disabled on entry, and
need to be re-enabled if more than one trap is to be handled.

Line 8 jumps to the point preserved when the program starts up (in the next code insert).
The value, sig, which the signal handler receives is passed to the preserved code. In this
example, sig always has the value SIGFPE, but in a more complicated program the same
signal handler could be used to handle other signals, too.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 8

The next segment of code is inserted after line 11 of Example 1 (just after the existing
declarations):

1. int value; // work variable
 2.

3. signal(SIGFPE, signalHandler); // set up signal handler
4. value=setjmp(preserve); // preserve and test environment
5. if (value) { // (non–0 after longjmp)
6. set.status &= DEC_Errors; // keep only errors
7. printf("Signal trapped [%s].\n", decContextStatusToString(&set));

 8. return 2;
 9. }

Here, a work variable is declared in line 1 and the signal handler function is registered
(identified to the C run time) in line 3. The call to the signal function identifies the
signal to be handled (SIGFPE) and the function (signalHandler) that will be called when
the signal is raised, and enables the handler.

Next, in line 4, the setjmp function is called. On its first call, this saves the current point
of execution into the preserve variable and then returns 0. The following lines (5–8) are
then not executed and execution of the main function continues as before.

If a trap later occurs (for example, if one of the arguments is not a number) then the
following takes place:

1. the SIGFPE signal is raised by the decNumber library

2. the signalHandler function is called by the C run time with argument SIGFPE

3. the function re-enables the signal, and then calls longjmp

4. this in turn causes the execution stack to be “unwound” to the point which was
preserved in the initial call to setjmp

5. the setjmp function then returns, with the (non-0) value passed to it in the call to
longjmp

6. the test in line 5 then succeeds, so line 6 clears any informational status bits in the
status field in the context structure which was given to the decNumber routines and
line 7 displays a message, using the same structure

7. finally, in line 8, the main function is ended by the return statement.

Of course, different behaviors are possible both in the signal handler, as already noted,
and after the jump; the main program could prompt for new values for the input
parameters and then continue as before, for example.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 9

Example 5 – compressed formats

The previous examples all used decNumber structures directly, but that format is not
necessarily compact and is machine-dependent. These attributes are generally good for
performance, but are less suitable for the storage and exchange of numbers.

The decimal32, decimal64, and decimal128 forms are provided as efficient, machine-
independent formats used for storing numbers of up to 7, 16 or 34 decimal digits respec-
tively, in 4, 8, or 16 bytes. These formats are similar to, and are used in the same manner
as, the C float and double data types.

Here’s an example program. Like Example 1, this is runnable as it stands, although it’s
recommended that at least the argument count check be added.

1. // example5.c –– decimal64 conversions
2. #include "decimal64.h" // decimal64 and decNumber library
3. #include <stdio.h> // for (s)printf

 4.

5. int main(int argc, char *argv[]) {
6. decimal64 a; // working decimal64 number
7. decNumber d; // working number
8. decContext set; // working context
9. char string[DECIMAL64_String]; // number–>string buffer

10. char hexes[25]; // decimal64–>hex buffer
 11. int i; // counter
 12.

13. decContextDefault(&set, DEC_INIT_DECIMAL64); // initialize
 14.

15. decimal64FromString(&a, argv[1], &set);
16. // lay out the decimal64 as eight hexadecimal pairs
17. for (i=0; i<8; i++) {
18. sprintf(&hexes[i*3], "%02x ", a.bytes[i]);

 19. }
 20. decimal64ToNumber(&a, &d);
 21. decNumberToString(&d, string);
22. printf("%s => %s=> %s\n", argv[1], hexes, string);

 23. return 0;
24. } // main

Here, the #include on line 2 not only defines the decimal64 type, but also includes the
decNumber and decContext header files. Also, if DECNUMDIGITS (see page 21) has not
already been defined, the decimal64.h file sets it to 16 so that any decNumbers declared
will be exactly the right size to take any decimal64 without rounding.

The declarations in lines 6–11 create three working structures and other work variables;
the decContext structure is initialized in line 13 (here, set.traps is 0).

Line 15 converts the input argument word to a decimal64 (with a function call very
similar to decNumberFromString). Note that the value would be rounded if the number
needed more than 16 digits of precision.

Lines 16–19 lay out the decimal64 as eight hexadecimal pairs in a string, so that its
encoding can be displayed.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 10

Lines 20–22 show how decimal64 numbers are used. First the decimal64 is converted to
a decNumber, then arithmetic could be carried out, and finally the decNumber is con-
verted back to some standard form (in this case a string, so it can be displayed in line
22). For example, if the input argument were “79”, the following would be displayed:

79 => 22 38 00 00 00 00 00 79 => 79

The decimal32 and decimal128 forms are used in exactly the same way, for working with
up to 7 or up to 34 digits of precision respectively. These forms have the same constants
and functions as decimal64 (with the obvious name changes).

Like decimal64.h, the decimal32 and decimal128 header files define the DECNUMDIGITS
constant (see page 21) to either 7 or 34 if it has not already been defined.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 11

Example 6 – Packed Decimal numbers

This example reworks Example 2, starting and ending with Packed Decimal numbers.
First, lines 4 and 5 of Example 1 (which Example 2 modifies) are replaced by the line:

 1. #include "decPacked.h"

Then the following declarations are added to the main function:

1. uint8_t startpack[]={0x01, 0x00, 0x00, 0x0C}; // investment=100000
 2. int32_t startscale=0;

3. uint8_t ratepack[]={0x06, 0x5C}; // rate=6.5%
 4. int32_t ratescale=1;

5. uint8_t yearspack[]={0x02, 0x0C}; // years=20
 6. int32_t yearsscale=0;

7. uint8_t respack[16]; // result, packed
 8. int32_t resscale; // ..

9. char hexes[49]; // for packed–>hex
 10. int i; // counter

The first three pairs declare and initialize the three parameters, with a Packed Decimal
byte array and associated scale for each. In practice these might be read from a file or
database. The fourth pair is used to receive the result. The last two declarations (lines
9 and 10) are work variables used for displaying the result.

Next, in Example 2, line 5 is removed, and lines 14 through 26 are replaced by:

1. decPackedToNumber(startpack, sizeof(startpack), &startscale, &start);
2. decPackedToNumber(ratepack, sizeof(ratepack), &ratescale, &rate);
3. decPackedToNumber(yearspack, sizeof(yearspack), &yearsscale, &years);

 4.

5. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
6. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
7. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
8. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
9. decNumberRescale(&total, &total, &mtwo, &set); // two digits please

 10.

11. decPackedFromNumber(respack, sizeof(respack), &resscale, &total);
 12.

13. // lay out the total as sixteen hexadecimal pairs
14. for (i=0; i<16; i++) {
15. sprintf(&hexes[i*3], "%02x ", respack[i]);

 16. }
17. printf("Result: %s (scale=%d)\n", hexes, resscale);

Here, lines 1 through 3 convert the Packed Decimal parameters into decNumber struc-
tures. Lines 5-9 calculate and rescale the total, as before, and line 11 converts the final
decNumber into Packed Decimal and scale. Finally, lines 13-17 lay out and display the
result, which should be:

Result: 00 00 00 00 00 00 00 00 00 00 00 03 52 36 45 1c (scale=2)

Note that the number is right-aligned, with a sign nibble.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 12

Module descriptions

The section contains a detailed description of each of the modules in the library. Each
description is in three parts:

1. An overview of the module and a description of its primary data structure.

2. A description of other definitions in the header (.h) file. This summarizes the content
of the header file rather than detailing every constant as it is assumed that users
will have a copy of the header file available.

3. A description of the functions in the source (.c) file. This is a detailed description
of each function and how to use it, the intent being that it should not be necessary
to have the source file available in order to use the functions.

The modules all conform to some general rules:

• They are reentrant (they have no static variables and may safely be used in multi-
threaded applications).

• All data structures are passed by reference, for best performance. Data structures
whose references are passed as inputs are never altered unless they are also used
as a result. Where appropriate, functions return a reference to a result argument.

• Up to some maximum (chosen by a tuning parameter in the decNumberLocal.h file),
calculations do not require additional allocated memory, except for rounded input
arguments. Whenever memory is allocated, it is always released before the function
returns or raises any traps. The latter constraint implies that long jumps may safely
be made from a signal handler handling any traps, for example.

• The names of all modules start with the string “dec”.

• The names of all public constants start with the string “DEC”.

• Public functions (and macros used as functions) in a module have names which start
with the name of the module (for example, decNumberAdd). This naming scheme
corresponds to the common naming scheme in object-oriented languages, where that
function (method) might be called decNumber.add.

• The types int and long are not used; instead types defined in the C99 stdint.h
header file are used to ensure integers are of the correct length.

• Strings always follow C conventions. That is, they are always terminated by a null
character ('\0').

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 13

decContext module

The decContext module defines the data structure used for providing the context for
operations and for managing exceptional conditions.

The decContext structure comprises the following fields:

digits The digits field is used to set the precision to be used for an operation. The
result of an operation will be rounded to this length if necessary, and hence
the space needed for the result decNumber structure is limited by this field.

digits is of type int32_t, and must have a value in the range 1 through
999,999,999.

emax The emax field is used to set the magnitude of the largest adjusted exponent that
is permitted. The adjusted exponent is calculated as though the number were
expressed in scientific notation (that is, except for 0, expressed with one non-
zero digit before the decimal point).

If the adjusted exponent for a result or conversion would be larger than emax
then an overflow results.

emax is of type int32_t, and must have a value in the range 0 through
999,999,999.

emin The emin field is used to set the smallest adjusted exponent that is permitted for
normal numbers. The adjusted exponent is calculated as though the number
were expressed in scientific notation (that is, except for 0, expressed with one
non-zero digit before the decimal point).

If the adjusted exponent for a result or conversion would be smaller than
–emin then the result is subnormal. If the result is also inexact, an underflow
results. The exponent of the smallest possible number (closest to zero) will
be emin–digits+1.7

emin will usually equal –emax, but when a compressed format is used it will
be –(emax–1).

emin is of type int32_t, and must have a value in the range –999,999,999
through 0.

round The round field is used to select the rounding algorithm to be used if rounding
is necessary during an operation. It must be one of the values in the rounding
enumeration:

DEC_ROUND_CEILING Round towards +Infinity.

DEC_ROUND_DOWN Round towards 0 (truncation).

DEC_ROUND_FLOOR Round towards –Infinity.

DEC_ROUND_HALF_DOWN Round to nearest; if equidistant, round down.

7 See http://www2.hursley.ibm.com/decimal/decarith.html for details.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 14

DEC_ROUND_HALF_EVEN Round to nearest; if equidistant, round so that the
final digit is even.

DEC_ROUND_HALF_UP Round to nearest; if equidistant, round up.

DEC_ROUND_UP Round away from 0.

status The status field comprises one bit for each of the exceptional conditions
described in the specifications (for example, Division by zero is indicated by
the bit defined as DEC_Division_by_zero). Once set, a bit remains set until
cleared by the user, so more than one condition can be recorded.

status is of type uint32_t (unsigned integer). Bits in the field must only be
set if they are defined in the decContext header file. In use, bits are set by
the decNumber library modules when exceptional conditions occur, but are
never reset. The library user should clear the bits when appropriate (for
example, after handling the exceptional condition), but should never set them.

traps The traps field is used to indicate which of the exceptional conditions should
cause a trap. That is, if an exceptional condition bit is set in the traps field,
then a trap event occurs when the corresponding bit in the status field is set.

In this implementation, a trap is indicated by raising the signal SIGFPE
(defined in signal.h), the Floating-Point Exception signal.

Applications may ignore traps, or may use them to recover from failed oper-
ations. Alternatively, applications can prevent all traps by clearing the traps
field, and inspect the status field directly to determine if errors have occurred.

traps is of type uint32_t. Bits in the field must only be set if they are defined
in the decContext header file.

Note that the result of an operation is always a valid number, but after an
exceptional condition has been detected its value may be one of the special
values (NaN or infinite). These values can then propagate through other
operations without further conditions being raised.

clamp The clamp field adds explicit exponent clamping, as is applied when a result
is encoded in one of the compressed formats. When 0, a result exponent is
limited to emax (for example, the exponent of a zero result will be clamped to
this value). When 1, a result exponent is limited to emax–(digits–1). As well
as clamping zeros, this may cause the coefficient of a result to be padded with
zeros on the right in order to bring the exponent within range.

For example, if emax is +96 and digits is 7, the result 1.23E+96 would have a
[sign, coefficient, exponent] of [0, 123, 94] if clamp were 0, but would give [0,
1230000, 90] if clamp were 1.

clamp is of type uint8_t (an unsigned byte).

extended The extended field controls the level of arithmetic supported. When 1, special
values are possible, some extra checking required for IEEE 854 conformance
is enabled, and subnormal numbers can result from operations (that is, results
whose adjusted exponent is as low as emin–(digits–1) are possible). When 0, the
X3.274 subset is supported; in particular, –0 is not possible, operands are
rounded, and the exponent range is balanced.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 15

If extended will always be 1, then the DECSUBSET tuning parameter may be set
to 0 in decContext.h. This will remove the extended field from the structure,
and also remove all code that refers to it. This gives a 10%–20% speed
improvement for many operations.

extended is of type uint8_t (an unsigned byte).

Please see the arithmetic specification for further details on the meaning of specific set-
tings (for example, the rounding mode).

Definitions

The decContext.h header file defines the context used by most functions in the
decNumber module; it is therefore automatically included by decNumber.h. In addition
to defining the decContext data structure described above, it also includes:

• The enumeration of the rounding modes supported by this implementation (for the
round field of the decContext).

• The exceptional condition flags, used in the status and traps fields.

• Constants describing the range of precision and adjusted exponent supported by the
decNumber package.

• Groupings for the exceptional conditions flags, indicating how they correspond to the
named conditions defined in IEEE 854, which are usually considered errors
(DEC_Errors), etc.

• A character constant naming each of the exceptional conditions (intended for
human-readable error reporting).

• Constants used for selecting initialization schemes.

• Definitions of the public functions in the decContext module.

Several of the exceptional condition flags merit special attention:

• The DEC_Clamped flag is set whenever the exponent of a result is clamped to a
maximum or minimum value, derived from emax or emin and possibly modified by
clamp.

• The DEC_Inexact flag is set whenever a result is inexact (non-zero digits were dis-
carded) due to rounding of input operands or the result.

• The DEC_Lost_digits flag is set when an input operand is made inexact through
rounding (which can only occur if extended is 0).

• The DEC_Rounded flag is set whenever a result or input operand is rounded (even if
only zero digits were discarded).

• The DEC_Subnormal flag is set whenever a result is a subnormal value.

Unlike the other status flags, which indicate error conditions, execution continues
normally when these events occur and the result is a number (unless an error condition
also occurs). As usual, any or all of the conditions can be enabled for traps and in this
case the operation is completed before the trap takes place.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 16

Functions

The decContext.c source file contains the public functions defined in the header file, as
follows.

decContextDefault(context, kind)

This function is used to initialize a decContext structure to default values. It is stongly
recommended that this function always be used to initialize a decContext structure, even
if most or all of the fields are to be set explicitly (in case new fields are added to a later
version of the structure).

The arguments are:

context (decContext *) Pointer to the structure to be initialized.

kind (int32_t) The kind of initialization to be performed. Only the values defined
in the decContext header file are permitted (any other value will initialize the
structure to a valid condition, but with the DEC_Invalid_operation status bit
set).

When kind is DEC_INIT_BASE, the defaults for the ANSI X3.274 arithmetic
subset are set. That is, the digits field is set to 9, the emax field is set to
999999999, the round field is set to ROUND_HALF_UP, the status field is cleared
(all bits zero), the traps field has all the DEC_Errors bits set (DEC_Rounded,
DEC_Inexact, DEC_Lost_digits, and DEC_Subnormal are 0), clamp is set to 0,
and extended (if present) is set to 0.

When kind is DEC_INIT_DECIMAL32, defaults for a decimal32 number using
IEEE 854 rules are set. That is, the digits field is set to 7, the emax field is set
to 96, the emin field is set to –95, the round field is set to
DEC_ROUND_HALF_EVEN, the status field is cleared (all bits zero), the traps field
is cleared (no traps are enabled), clamp is set to 1, and extended (if present) is
set to 1.

When kind is DEC_INIT_DECIMAL64, defaults for a decimal64 number using
IEEE 854 rules are set. That is, the digits field is set to 16, the emax field is
set to 384, the emin field is set to –383, and the other fields are set as for
DEC_INIT_DECIMAL32.

When kind is DEC_INIT_DECIMAL128, defaults for a decimal128 number using
IEEE 854 rules are set. That is, the digits field is set to 34, the emax field is
set to 6144, the emin field is set to –6143, and the other fields are set as for
DEC_INIT_DECIMAL32.

Returns context.

decContextSetStatus(context, status)

This function is used to set one or more status bits in the status field of a decContext. If
any of the bits being set have the corresponding bit set in the traps field, a trap is raised
(regardless of whether the bit is already set in the status field). Only one trap is raised
even if more than one bit is being set.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 17

The arguments are:

context (decContext *) Pointer to the structure whose status is to be set.

status (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit
to be set in the context status field. Only bits defined in the decContext header
file should be set; the effect of setting other bits is undefined.8

Returns context.

Normally, only library modules use this function. Applications may clear status bits but
should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

decContextSetStatusFromString(context, string)
This function is used to set a status bit in the status field of a decContext, using the name
of the bit as returned by the decContextStatusToString function. If the bit being set has
the corresponding bit set in the traps field, a trap is raised (regardless of whether the bit
is already set in the status field).

The arguments are:

context (decContext *) Pointer to the structure whose status is to be set.

string (char *) A string which must be exactly equal to one that might be returned
by decContextStatusToString. If the string is “No status”, the status is not
changed and no trap is raised. If the string is “Multiple status”, or is not
recognized, then the call is in error.

Returns context unless the string is in error, in which case NULL is returned.

Normally, only library and test modules use this function. Applications may clear status
bits but should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a
C long jump, and hence control may not return from the function. It should therefore
only be invoked when any state and resources used (such as allocated memory) are clean.

decContextStatusToString(context)
This function returns a pointer (char *) to a human-readable description of a status bit.
The string pointed to will be a constant.

The argument is:

context (decContext *) Pointer to the structure whose status is to be returned as a
string. The bits set in the status field must comprise only bits defined in the
header file.

If no bits are set in the status field, a pointer to the string “No status” is returned. If
more than one bit is set, a pointer to the string “Multiple status” is returned.

8 If “private” bits were allowed, future extension of the library with other conditions would be impossible.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 18

Note that the content of the string pointed to is a programming interface (it is understood
by the decContextSetStatusFromString function) and is therefore not language- or
locale-dependent.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 19

decNumber module

The decNumber module defines the data structure used for representing numbers in a
form suitable for computation, and provides the functions for operating on those values.

The decNumber structure is optimized for efficient processing of relatively short numbers
(tens or hundreds of digits); in particular it allows the use of fixed sized structures and
minimizes copy and move operations. The functions in the module, however, support
arbitrary precision arithmetic (up to 999,999,999 decimal digits, with exponents up to 9
digits).

The essential parts of a decNumber are the coefficient, which is the significand of the
number, the exponent (which indicates the power of ten by which the coefficient should be
multiplied), and the sign, which is 1 if the number is negative, or 0 otherwise. The
numerical value of the number is then given by: (–1)sign × coefficient × 10exponent.

Numbers may also be a special value. The special values are NaN (Not a Number), which
may be quiet (propagates quietly through operations) or signaling (raises the Invalid oper-
ation condition when encountered), and ±infinity.

These parts are encoded in the four fields of the decNumber structure:

digits The digits field contains the length of the coefficient, in decimal digits.

digits is of type int32_t, and must have a value in the range 1 through
999,999,999.

exponent The exponent field holds the exponent of the number. Its range is limited by
the requirement that the range of the adjusted exponent of the number be bal-
anced and fit within a whole number of decimal digits (in this implementation,
be –999,999,999 through +999,999,999). The adjusted exponent is the expo-
nent that would result if the number were expressed with a single digit before
the decimal point, and is therefore given by exponent+digits–1.

When the extended flag in the context is 1, gradual underflow (using subnormal
values) is enabled. In this case, the lower limit for the adjusted exponent
becomes –999,999,999–(precision–1), where precision is the digits setting from
the context; the adjusted exponent may then have 10 digits.

exponent is of type int32_t.

bits The bits field comprises one bit which indicates the sign of the number (1 for
negative, 0 otherwise), 3 bits which indicate the special values, and 4 further
bits which are unused and reserved. These reserved bits must be zero.

If the number has a special value, just one of the indicator bits (DECINF,
DECNAN, or DECSNAN) will be set (along with DECNEG iff the sign is 1). If DECINF
is set digits must be 1 and the other fields must be 0. If the number is a NaN,
the exponent must be zero and the coefficient holds any diagnostic information
(with digits indicating its length, as for finite numbers). A zero coefficient
indicates no diagnostic information.

bits is of type uint8_t (an unsigned byte). Masks for the named bits, and some
useful macros, are defined in the header file.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 20

lsu The lsu field is one or more units in length (of type decNumberUnit, an unsigned
integer), and contains the digits of the coefficient. Each unit represents one or
more of the digits in the coefficient and has a binary value in the range 0
through 10n

–1, where n is the number of digits in a unit and is the value set
by DECDPUN (see page 41). The size of a unit is the smallest of 1, 2, or 4 bytes
which will contain the maximum value held in the unit.

The units comprising the coefficient start with the least significant unit (lsu).
Each unit except the most significant unit (msu) contains DECDPUN digits. The
msu contains from 1 through DECDPUN digits, and must not be 0 unless digits
is 1 (for the value zero). Leading zeros in the msu are never included in the
digits count, except for the value zero.

The number of units predefined for the lsu field is determined by
DECNUMDIGITS, which defaults to 1 (the number of units will be DECNUMDIGITS
divided by DECDPUN, rounded up to a whole unit).

For many applications, there will be a known maximum length for numbers
and DECNUMDIGITS can be set to that length, as in Example 1 (see page 5).
In others, the length may vary over a wide range and it then becomes the
programmer’s responsibility to ensure that there are sufficient units available
immediately following the decNumber lsu field. This can be achieved by
enclosing the decNumber in other structures which append various lengths
of unit arrays, or in the more general case by allocating storage with sufficient
space for the other decNumber fields and the units of the number.

lsu is an array of type decNumberUnit (an unsigned integer whose length
depends on the value of DECDPUN), with at least one element. If digits needs
fewer units than the size of the array, remaining units are not used (they will
neither be changed nor referenced). For special values, only the first unit need
be 0.

It is expected that decNumbers will usually be constructed by conversions from other
formats, such as strings or decimal64 structures, so the decNumber structure is in some
sense an “internal” representation; in particular, it is machine-dependent.9

Examples:

If DECDPUN were 4, the value –1234.50 would be encoded with:

digits = 6
exponent = –2
bits = 0x80
lsu = {3450, 12}

the value 0 would be:

digits = 1
exponent = 0
bits = 0x00
lsu = {0}

9 The layout of an integer might be big-endian or little-endian, for example.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 21

and –∞ (minus infinity) would be:

digits = 1
exponent = 0
bits = 0xC0
lsu = {0}

Definitions

The decNumber.h header file defines the decNumber data structure described above. It
also includes:

• The tuning parameter DECDPUN.

This sets the number of digits held in one unit (see page 21), which in turn alters the
performance and other characteristics of the library. Further details are given in
the tuning section (see page 41).

If this parameter is changed, the decNumber.c source file must be recompiled for the
change to have effect.

• Constants naming the bits in the bits field, such as DECNEG, the sign bit.

• Definitions of the public functions and macros in the decNumber module.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 22

Functions

The decNumber.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, the arithmetic operations, and some
utility functions.

The functions all follow some general rules:

• Operands to the functions which are decNumber structures (referenced by an argu-
ment) are never modified unless they are also specified to be the result structure
(which is always permitted).

Often, operations which do specify an operand and result as the same structure can
be carried out in place, giving improved performance. For example, x=x+1, using the
decNumberAdd function, can be several times faster than x=y+1.

• Each function forms its primary result by setting the content of one of the structures
referenced by the arguments; a pointer to this structure is returned by the function.

• Exceptional conditions and errors are reported by setting a bit in the status field of
a referenced decContext structure (see page 14). The corresponding bit in the traps
field of the decContext structure determines whether a trap is then raised, as also
described earlier.

• If an argument to a function is corrupt (it is a NULL reference, or it is an input argu-
ment and the content of the structure it references is inconsistent), the function is
unprotected (may “crash”) unless DECCHECK is enabled (see the next rule). However,
in normal operation (that is, no argument is corrupt), the result will always be a
valid decNumber structure. The value of the decNumber result may be infinite or
a quiet NaN if an error was detected (i.e., if one of the DEC_Errors bits (see page 16)
is set in the decContext status field).

• For best performance, input operands are assumed to be valid (not corrupt) and are
not checked unless DECCHECK (see page 42) is 1, which enables full operand checking
(including NULL operands). Whether DECCHECK is 0 or 1, the value of a result is
undefined if an argument is corrupt. DECCHECK checking is a diagnostic tool only; it
will report the error and prevent code failure by ensuring that results are valid
numbers (unless the result reference is NULL), but it does not attempt to correct
arguments.

Conversion functions

The conversion functions build a decNumber from a string, or lay out a decNumber as a
character string.

decNumberFromString(number, string, context)
This function is used to convert a character string to decNumber format. It implements
the to–number conversion from the arithmetic specification.

The conversion is exact provided that the numeric string has no more significant digits
than are specified in context.digits. If there are more digits in the string, the value
will be rounded to fit, using the context.round rounding mode. The context.digits

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 23

field therefore both determines the maximum precision for unrounded numbers and
defines the minimum size of the decNumber structure required.

The arguments are:

number (decNumber *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the appropriate specification. The string will not be
altered.

context (decContext *) Pointer to the context structure whose digits, emin, and emax
fields indicate the maximum acceptable precision and exponent range, and
whose status field is used to report any errors. If its extended field is 1, then
special values (±Inf, ±Infinity, ±NaN, or ±sNaN, independent of case) are
accepted, and the sign and exponent of zeros are preserved. NaNs may also
specify diagnostic information as a string of digits immediately following the
name.

Returns number.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a
number, which depends on the setting of extended in the context), DEC_Overflow (the
adjusted exponent of the number is larger than context.emax), or DEC_Underflow (the
adjusted exponent is less than context.emin and the conversion is not exact). If any of
these conditions are set, the number structure will have a defined value as described in
the arithmetic specification (this may be a subnormal or infinite value).

decNumberToString(number, string)
This function is used to convert a decNumber number to a character string, using scien-
tific notation if an exponent is needed (that is, there will be just one digit before any
decimal point). It implements the to–scientific–string conversion.

The arguments are:

number (decNumber *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least 14 characters longer than the number of
digits in the number (number–>digits).

Returns string.

No error is possible from this function. Note that non-numeric strings (one of
+Infinity, –Infinity, NaN, or sNaN) are possible, and NaNs may have a – sign and/or
diagnostic information.

decNumberToEngString(number, string)
This function is used to convert a decNumber number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to–engineering–string conversion.

The arguments and result are the same as for the decNumberToString function, and
similarly no error is possible from this function.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 24

Arithmetic functions

The arithmetic functions all follow the same syntax and rules, and are summarized
below. They all take the following arguments:

number (decNumber *) Pointer to the structure where the result will be placed.

lhs (decNumber *) Pointer to the structure which is the left hand side (lhs) oper-
and for the operation. This argument is omitted for monadic operations.

rhs (decNumber *) Pointer to the structure which is the right hand side (rhs)
operand for the operation.

context (decContext *) Pointer to the context structure whose settings are used for
determining the result and for reporting any exceptional conditions.

Each function returns number.

Some functions, such as decNumberExp, as described as mathematical functions. These
have some restrictions: context.emax must be < 106, context.emin must be > –106, and
context.digits must be < 106. Non-zero operands to these functions must also fit within
these bounds.

The precise definition of each operation can be found in the specification documents.

decNumberAbs(number, rhs, context)

The number is set to the absolute value of the rhs. This has the same effect as
decNumberPlus unless rhs is negative, in which case it has the same effect as
decNumberMinus.

decNumberAdd(number, lhs, rhs, context)

The number is set to the result of adding the lhs to the rhs.

decNumberCompare(number, lhs, rhs, context)

This function compares two numbers numerically. If the lhs is less than the rhs then the
number will be set to the value –1. If they are equal (that is, when subtracted the result
would be 0), then number is set to 0. If the lhs is greater than the rhs then the number will
be set to the value 1. If the operands are not comparable (that is, one or both is a NaN)
the result will be NaN.

decNumberCompareTotal(number, lhs, rhs, context)

This function compares two numbers using the IEEE 754r proposed ordering. If the lhs
is less than the rhs in the total order then the number will be set to the value –1. If they
are equal, then number is set to 0. If the lhs is greater than the rhs then the number will
be set to the value 1.

The total order differs from the numerical comparison in that: –NaN < –sNaN <
–Infinity < –finites < –0 < +0 < +finites < +Infinity < +sNaN < +NaN. Also, 1.000 < 1.0
(etc.) and NaNs are ordered by payload.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 25

decNumberDivide(number, lhs, rhs, context)
The number is set to the result of dividing the lhs by the rhs.

decNumberDivideInteger(number, lhs, rhs, context)
The number is set to the integer part of the result of dividing the lhs by the rhs.

Note that it must be possible to express the result as an integer. That is, it must have
no more digits than context.digits. If it does then DEC_Division_impossible is raised.

decNumberExp(number, rhs, context)
The number is set to e raised to the power of rhs, rounded if necessary using the digits
setting in the context and using the round–half–even rounding algorithm.

Finite results will always be full precision and inexact, except when rhs is a zero or
–Infinity (giving 1 or 0 respectively). Inexact results will almost always be correctly
rounded, but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberLn(number, rhs, context)
The number is set to the natural logarithm (logarithm in base e) of rhs, rounded if neces-
sary using the digits setting in the context and using the round–half–even rounding algo-
rithm. rhs must be positive or a zero.

Finite results will always be full precision and inexact, except when rhs is equal to 1,
which gives an exact result of 0. Inexact results will almost always be correctly rounded,
but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberLog10(number, rhs, context)
The number is set to the logarithm in base ten of rhs, rounded if necessary using the digits
setting in the context and using the round–half–even rounding algorithm. rhs must be posi-
tive or a zero.

Finite results will always be full precision and inexact, except when rhs is equal to an
integral power of ten, in which case the result is the exact integer.

Inexact results will almost always be correctly rounded, but may be up to 1 ulp (unit in
last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above.

decNumberMax(number, lhs, rhs, context)
This function compares two numbers numerically and sets number to the larger. If the
numbers compare equal then number is chosen with regard to sign and exponent. Unu-
sually, if one operand is a quiet NaN and the other a number, then the number is
returned.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 26

decNumberMin(number, lhs, rhs, context)
This function compares two numbers numerically and sets number to the smaller. If the
numbers compare equal then number is chosen with regard to sign and exponent. Unu-
sually, if one operand is a quiet NaN and the other a number, then the number is
returned.

decNumberMinus(number, rhs, context)
The number is set to the result of subtracting the rhs from 0. That is, it is negated, fol-
lowing the usual arithmetic rules; this may be used for implementing a prefix minus
operation.

decNumberMultiply(number, lhs, rhs, context)
The number is set to the result of multiplying the lhs by the rhs.

decNumberNormalize(number, rhs, context)
This function has the same effect as decNumberPlus except that the final result is set to
its simplest form. That is, a non-zero number which has any trailing zeros in the coeffi-
cient has those zeros removed by dividing the coefficient by the appropriate power of ten
and adjusting the exponent accordingly, and a zero has its exponent set to 0.

decNumberPlus(number, rhs, context)
The number is set to the result of adding the rhs to 0. This takes place according to the
settings given in the context, following the usual arithmetic rules. This may therefore be
used for rounding or for implementing a prefix plus operation.

decNumberPower(number, lhs, rhs, context)
The number is set to the result of raising the lhs to the power of the rhs, rounded if nec-
essary using the settings in the context.

Results will be exact when the rhs has an integral value and the result does not need to
be rounded, and also will be exact in certain special cases, such as when the lhs is a zero
(see the arithmetic specification for details).

Inexact results will always be full precision, and will almost always be correctly rounded,
but may be up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as
described above, except that the normal range of values and context is allowed if the rhs
has an integral value in the range –1999999997 through +999999999.10

decNumberQuantize(number, lhs, rhs, context)
This function is used to modify a number so that its exponent has a specific value, equal
to that of the rhs. The decNumberRescale (see page 28) function may also be used for this
purpose, but requires the exponent to be given as a decimal number.

10 This relaxation of the restrictions provides upwards compatibility with an earlier version of the
decNumberPower function which could only handle an rhs with an integral value.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 27

When rhs is a finite number, its exponent is used as the requested exponent (it provides
a “pattern” for the result). Its coefficient and sign are ignored.

The number is set to a value which is numerically equal (except for any rounding) to the
lhs, modified as necessary so that it has the requested exponent. To achieve this, the
coefficient of the number is adjusted (by rounding or shifting) so that its exponent has the
requested value. For example, if the lhs had the value 123.4567, and the rhs had the
value 0.12, the result would be 123.46 (that is, 12346 with an exponent of –2, matching
the exponent of the rhs).

Note that the exponent of the rhs may be positive, which will lead to the number being
adjusted so that it is a multiple of the specified power of ten.

If adjusting the exponent would mean that more than context.digits would be needed
in the coefficient, then the DEC_Invalid_operation condition is raised. This guarantees
that in the absence of error the exponent of number is always equal to that of the rhs.

If either operand is a special value then the usual rules apply, except that if either operand
is infinite and the other is finite then the DEC_Invalid_operation condition is raised,
or if both are infinite then the result is the first operand.

decNumberRemainder(number, lhs, rhs, context)
The number is set to the remainder when lhs is divided by the rhs.

That is, if the same lhs, rhs, and context arguments were given to the
decNumberDivideInteger and decNumberRemainder functions, resulting in i and r
respectively, then the identity

lhs = (i × rhs) + r

holds.

Note that, as for decNumberDivideInteger, it must be possible to express the integer part
of the result as an integer. That is, it must have no more digits than context.digits.
If it does then DEC_Division_impossible is raised.

decNumberRemainderNear(number, lhs, rhs, context)
The number is set to the remainder when lhs is divided by the rhs, using the rules defined
in IEEE 854. This follows the same definition as decNumberRemainder, except that the
nearest integer (or the nearest even integer if the remainder is equidistant from two) is
used for i instead of the result from decNumberDivideInteger.

For example, if lhs had the value 10 and rhs had the value 6 then the result would be -2
(instead of 4) because the nearest multiple of 6 is 12 (rather than 6).

decNumberRescale(number, lhs, rhs, context)
This function is used to rescale a number so that its exponent has a specific value, given
by the rhs. The decNumberQuantize (see page 27) function may also be used for this
purpose, and is often easier to use.

The rhs must be a whole number (before any rounding); that is, any digits in the frac-
tional part of the number must be zero. It must have no more than nine digits, or
context.digits digits, (whichever is smaller) in the integer part of the number.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 28

The number is set to a value which is numerically equal (except for any rounding) to the
lhs, rescaled so that it has the requested exponent. To achieve this, the coefficient of the
number is adjusted (by rounding or shifting) so that its exponent has the value of the rhs.
For example, if the lhs had the value 123.4567, and decNumberRescale was used to set
its exponent to –2, the result would be 123.46 (that is, 12346 with an exponent of –2).

Note that the rhs may be positive, which will lead to the number being adjusted so that it
is a multiple of the specified power of ten.

If adjusting the scale would mean that more than context.digits would be needed in
the coefficient, then the DEC_Invalid_operation condition is raised. This guarantees that
in the absence of error the exponent of number is always equal to the rhs.

decNumberSameQuantum(number, lhs, rhs)

This function is used to test whether the exponents of two numbers are equal. The
coefficients and signs of the operands (lhs and rhs) are ignored.

If the exponents of the operands are equal, or if they are both Infinities or they are both
NaNs, number is set to 1. In all other cases, number is set to 0. No error is possible.

decNumberSquareRoot(number, rhs, context)

The number is set to the square root of the rhs, rounded if necessary using the digits set-
ting in the context and using the round–half–even rounding algorithm. The preferred
exponent of the result is floor(exponent/2).

decNumberSubtract(number, lhs, rhs, context)

The number is set to the result of subtracting the rhs from the lhs.

decNumberToIntegralValue(number, rhs, context)

The number is set to the rhs, with any fractional part removed if necessary using the
rounding mode in the context.

No error is possible, no flags are set (unless the operand is a signaling NaN), and the
result may have a positive exponent.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 29

Utility functions

The utility functions provide for copying, trimming, and zeroing numbers, and for deter-
mining the version of the decNumber package.

decNumberCopy(number, source)
This function is used to copy the content of one decNumber structure to another. It is
used when the structures may be of different sizes and hence a straightforward structure
copy by C assignment is inappropriate. It also may have performance benefits when the
number is short relative to the size of the structure, as only the units containing the
digits in use in the source structure are copied.

The arguments are:

number (decNumber *) Pointer to the structure to receive the copy. It must have space
for source–>digits digits.

source (decNumber *) Pointer to the structure which will be copied to number. All
fields are copied, with the units containing the source–>digits digits being
copied starting from lsu. The source structure is unchanged.

Returns number. No error is possible from this function.

decNumberIsInfinite(number)
This function is used to test whether a number is infinite.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is infinite, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberIsNaN(number)
This function is used to test whether a number is a NaN (quiet or signaling).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a NaN, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberIsNegative(number)
This function is used to test whether a number is negative (either minus zero or less than
zero).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is negative, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 30

decNumberIsQNaN(number)

This function is used to test whether a number is a Quiet NaN.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Quiet NaN, or 0 (false) otherwise. This function may
be implemented as a macro; no error is possible.

decNumberIsSNaN(number)

This function is used to test whether a number is a Signaling NaN.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Signaling NaN, or 0 (false) otherwise. This function
may be implemented as a macro; no error is possible.

decNumberIsZero(number)

This function is used to test whether a number is a zero (either positive or negative).

The argument is:

number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is zero, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberTrim(number)

This function is used to remove insignificant trailing zeros from a number. That is, if the
number has any fractional trailing zeros they are removed by dividing the coefficient by
the appropriate power of ten and adjusting the exponent accordingly.

The argument is:

number (decNumber *) Pointer to the structure whose value is to be trimmed.

Returns number. No error is possible from this function.

decNumberVersion()

This function returns a pointer (char *) to a human-readable description of the version
of the decNumber package being run. The string pointed to will have at most 16 charac-
ters and will be a constant, and will comprise two words (the name and a decimal number
identifying the version) separated by a blank. For example:

decNumber 3.02

No error is possible from this function.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 31

decNumberZero(number)
This function is used to set the value of a decNumber structure to zero.

The argument is:

number (decNumber *) Pointer to the structure to be set to 0. It must have space for
one digit.

Returns number. No error is possible from this function.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 32

decimal32, decimal64, and decimal128
modules

The decimal32, decimal64, and decimal128 modules define the data structures and
functions for compressed formats which are 32, 64, or 128 bits (4, 8, or 16 bytes) long,
respectively. These provide up to 7, 16, or 34 digits of decimal precision in a compact and
machine-independent form. Details of the formats are available at:

http://www2.hursley.ibm.com/decimal/decbits.html

Apart from the different lengths and ranges of the numbers, the three modules are
identical, so this section just describes the decimal64 format. The definitions and func-
tions for the other two formats are identical, except for the obvious name and value
changes.

Note that these formats are now included in the draft of the proposed IEEE-SA 754
standard (“754r”). However, they are still subject to change; use at your own risk.

In this implementation each format is represented as an array of unsigned bytes. There
is therefore just one field in the decimal64 structure:

bytes The bytes field represents the eight bytes of a decimal64 number, using
Densely Packed Decimal encoding for the coefficient.11

The storage of a number in the bytes array may be chosen to either follow the byte
ordering (“endianness”) of the computing platform or to use fixed ordering (big-endian,
with bytes[0] containing the sign bit of the format). This choice is made at compile time
by setting the DECENDIAN tuning parameter (see page 42).

The decimal64 module includes private functions for coding and decoding Densely Packed
Decimal data; these functions are shared by the other compressed format modules.

Definitions

The decimal64.h header file defines the decimal64 data structure described above. It
includes the decNumber.h header file, to simplify use, and (if not already defined) it sets
the DECNUMDIGITS constant to 16, so that any declared decNumber will be the right size
to contain any decimal64 number.

If more than one of the three decimal format header files are used in a program, they
must be included in decreasing order of size so that the largest value of DECNUMDIGITS
will be used.

The decimal64.h header file also contains:

• Constants defining aspects of decimal64 numbers, including the maximum precision,
the minimum and maximum (adjusted) exponent supported, the bias applied to the

11 See http://www2.hursley.ibm.com/decimal/DPDecimal.html for a summary of Densely
Packed Decimal encoding.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 33

exponent, the length of the number in bytes, and the maximum number of characters
in the string form of the number (including terminator).

• Macros for accessing the leading fields of the number (comprising the sign, combi-
nation field, and exponent continuation).

• Definitions of the public functions in the decimal64 module.

The decimal64 module also contains the shared routines for compressing and expanding
Densely Packed Decimal data, and uses the decDPD.h header file. The latter contains
look-up tables which are used for encoding and decoding Densely Packed Decimal data
(only two tables of the four tables are used in a given compilation). These tables are
automatically generated and should not need altering.

Functions

The decimal64.c source file contains the public functions defined in the header file.
These comprise conversions to and from strings, and to and from decNumber form.

When a decContext structure is used to report errors, the same rules are followed as for
other modules. That is, a trap may be raised, etc.

decimal64FromString(decimal64, string, context)

This function is used to convert a character string to decimal64 format. It implements
the to–number conversion in the arithmetic specification (that is, it accepts subnormal
numbers, NaNs, and infinities, and it preserves the sign and exponent of 0). If neces-
sary, the value will be rounded to fit.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be set from the character string.

string (char *) Pointer to the input character string. This must be a valid numeric
string, as defined in the specification. The string will not be altered.

context (decContext *) Pointer to the context structure whose status field is used to
control the conversion and report any error, as for the decNumberFromString
function (see page 23) except that the precision and exponent range are fixed
for each format.

Returns decimal64.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a
number), DEC_Overflow (the adjusted exponent of the number is positive and is greater
than context.emax), or DEC_Underflow (the adjusted exponent of the number is negative
and is less than context.emin and the conversion is not exact). If one of these conditions
is set, the decimal64 structure will have the value NaN, Infinity, or a finite (possibly
subnormal) number respectively, with the same sign as the converted number after
overflow or underflow.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 34

decimal64ToString(decimal64, string)
This function is used to convert a decimal64 number to a character string, using scientific
notation if an exponent is needed (that is, there will be just one digit before any decimal
point). It implements the to–scientific–string conversion in the arithmetic specification.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be converted to a string.

string (char *) Pointer to the character string buffer which will receive the con-
verted number. It must be at least DECIMAL64_String (24) characters long.

Returns string.

No error is possible from this function.

decimal64ToEngString(decimal64, string)
This function is used to convert a decimal64 number to a character string, using engi-
neering notation (where the exponent will be a multiple of three, and there may be up
to three digits before any decimal point) if an exponent is needed. It implements the
to–engineering–string conversion in the arithmetic specification.

The arguments and result are the same as for the decimal64ToString function, and sim-
ilarly no error is possible from this function.

decimal64FromNumber(decimal64, number, context)
This function is used to convert a decNumber to decimal64 format.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be set from the decNumber. This
may receive a numeric value (including subnormal values and –0) or a special
value.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

context (decContext *) Pointer to a context structure whose status field is used to
report any error and whose other fields are used to control rounding, etc., as
required.

Returns decimal64.

The possible errors are as for the decimal64FromString function (see page 34), except
that DEC_Conversion_syntax is not possible.

decimal64ToNumber(decimal64, number)
This function is used to convert a decimal64 number to decNumber form in preparation
for arithmetic or other operations.

The arguments are:

decimal64 (decimal64 *) Pointer to the structure to be converted to a decNumber. The
decimal64 structure will not be altered.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 35

number (decNumber *) Pointer to the result structure. It must have space for 16 digits
of precision.

Returns number.

No error is possible from this function.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 36

decPacked module

The decPacked module provides conversions to and from Packed Decimal numbers.
Unlike the other modules, no specific decPacked data structure is defined because packed
decimal numbers are usually held as simple byte arrays, with a scale either being held
separately or implied.

Packed Decimal numbers are held as a sequence of Binary Coded Decimal digits, most
significant first (at the lowest offset into the byte array) and one per 4 bits (that is, each
digit taking a value of 0–9, and two digits per byte), with optional leading zero digits.
The final sequence of 4 bits (called a “nibble”) will have a value greater than nine which
is used to represent the sign of the number. The sign nibble may be any of the six pos-
sible values:

1010 (0x0a) plus

1011 (0x0b) minus

1100 (0x0c) plus (preferred)

1101 (0x0d) minus (preferred)

1110 (0x0e) plus

1111 (0x0f) plus12

Packed Decimal numbers therefore represent decimal integers. They often have associ-
ated with them a second integer, called a scale. The scale of a number is the number of
digits that follow the decimal point, and hence, for example, if a Packed Decimal number
has the value –123456 with a scale of 2, then the value of the combination is –1234.56.

Definitions

The decPacked.h header file does not define a specific data structure for Packed Decimal
numbers.

It includes the decNumber.h header file, to simplify use, and (if not already defined) it
sets the DECNUMDIGITS constant to 32, to allow for most common uses of Packed Decimal
numbers. If you wish to work with higher (or lower) precisions, define DECNUMDIGITS to
be the desired precision before including the decPacked.h header file.

The decPacked.h header file also contains:

• Constants describing the six possible values of sign nibble, as described above.

• Definitions of the public functions in the decPacked module.

12 Conventionally, this sign code can also be used to indicate that a number was originally unsigned.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 37

Functions

The decPacked.c source file contains the public functions defined in the header file.
These provide conversions to and from decNumber form.

decPackedFromNumber(bytes, length, scale, number)
This function is used to convert a decNumber to Packed Decimal format.

The arguments are:

bytes (uint8_t *) Pointer to an array of unsigned bytes which will receive the
number.

length (int32_t) Contains the length of the byte array, in bytes.

scale (int32_t *) Pointer to an int32_t which will receive the scale of the number.

number (decNumber *) Pointer to the input structure. The decNumber structure will
not be altered.

Returns bytes unless the decNumber has too many digits to fit in length bytes (allowing
for the sign) or is a special value (an infinity or NaN), in which cases NULL is returned
and the bytes and scale values are unchanged.

The number is converted to bytes in Packed Decimal format, right aligned in the bytes
array, whose length is given by the second parameter. The final 4-bit nibble in the array
will be one of the preferred sign nibbles, 1100 (0x0c) for + or 1101 (0x0d) for –. The
maximum number of digits that will fit in the array is therefore length×2–1. Unused bytes
and nibbles to the left of the number are set to 0.

The scale is set to the scale of the number (this is the exponent, negated). To force the
number to a particular scale, first use the decNumberRescale function (see page 28) on
the number, negating the required scale in order to adjust its exponent and coefficient as
necessary.

decPackedToNumber(bytes, length, scale, number)
This function is used to convert a Packed Decimal format number to decNumber form in
preparation for arithmetic or other operations.

The arguments are:

bytes (uint8_t *) Pointer to an array of unsigned bytes which contain the number
to be converted.

length (int32_t) Contains the length of the byte array, in bytes.

scale (int32_t *) Pointer to an int32_t which contains the scale of the number to
be converted. This must be set; use 0 if the number has no associated scale
(that is, it is an integer). The effective exponent of the resulting number (that
is, the number of significant digits in the number, less the scale, less 1) must
fit in 9 decimal digits.

number (decNumber *) Pointer to the decNumber structure which will receive the
number. It must have space for length×2–1 digits.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 38

Returns number, unless the effective exponent was out of range or the format of the bytes
array was invalid (the final nibble was not a sign, or an earlier nibble was not in the
range 0–9). In these error cases, NULL is returned and number will have the value 0.

Note that –0 and zeros with non-zero exponents are possible resulting numbers.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 39

Additional options

This section describes some additional features of the decNumber package, intended to
be used when extending the package or tuning its performance. If you are just using the
package for applications, using full IEEE arithmetic, you should not need to modify the
parameters controlling these features.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 40

Tuning and testing parameters

The decNumber package incorporates a number of compile-time parameters. If any of
these parameters is changed, all the decNumber source files being used must be recom-
piled to ensure correct operation.

Two parameters are used to tune the trade-offs between storage use and speed. The first
of these determines the granularity of calculations (the number of digits per unit of
storage) and is normally set to three or to a power of two. The second is normally set so
that short numbers (tens of digits) require no storage management – working buffers for
operations will be stack based, not dynamically allocated.

These are:

DECDPUN This parameter is set in the decNumber.h file, and must be an integer in
the range 1 through 9. It sets the number of digits held in one unit (see page
21), which in turn alters the performance and other characteristics of the
library. In particular:

• If DECDPUN is 1, conversions are fast, but arithmetic operations are at
their slowest. In general, as the value of DECDPUN increases, arithmetic
speed improves and conversion speed gets worse.

• Conversions between the decNumber internal format and the
decimal64 and other compressed formats are fastest – sometimes by
as much as a factor of 4 or 5 – when DECDPUN is 3 (because Densely
Packed Decimal encodes digits in groups of three).

• If DECDPUN is not 1, 3, or a power of two, calculations converting digits
to units and vice versa are slow; this may slow some operations by up
to 20%.

• If DECDPUN is greater than 4, either non-ANSI-89 C integers or library
calls have to be used for 64-bit intermediate calculations.13

The suggested value for DECDPUN is 3, which gives good performance for
working with the compressed decimal formats. If the compressed formats
are not being used, or 64-bit integers are unavailable (see DECUSE64, below),
then measuring the effect of changing DECDPUN to 4 is suggested. If the
library is to be used for high precision calculations (many tens of digits)
then it is recommended that measurements be made to evaluate whether
to set DECDPUN to 8 (or possibly to 9, though this will often be slower).

DECBUFFER This parameter is set in the decNumberLocal.h file, and must be a non-
negative integer. It sets the precision, in digits, which the operator func-
tions will handle without allocating dynamic storage.14

13 The decNumber library currently assumes that non-ANSI-89 64-bit integers are available if DECDPUN is
greater than 4. See also the DECUSE64 tuning parameter.

14 Dynamic storage may still be allocated in certain cases, but in general this is rare.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 41

One or more DECBUFFER-sized buffers will be allocated on the stack,
depending on the function; comparison, additions, subtractions, and
exponentiation all allocate one, multiplication allocates two, and division
allocates three; more complex operations may allocate more. It is recom-
mended that DECBUFFER be a multiple of DECDPUN and also a multiple of 4,
and large enough to hold common numbers in your application.

A third compile-time parameter controls the layout of the compressed decimal formats
(see page 33). The storage of a number in these formats may be chosen to either follow
the byte ordering (“endianness”) of the computing platform or to use fixed ordering. For
best performance when using these formats, this parameter should be set to 1. The
parameter is set in the decNumberLocal.h file, and is:

DECENDIAN This must be either 1 or 0. If 1, which is recommended, the formats will
be stored following the endianness of the underlying computing platform.
For example, for AMD and Intel x86 architecture machines, which are
little–endian, the byte containing the sign bit of the format is at the highest
memory address; for IBM z-Series machines, which are big–endian, the byte
containing the sign bit of the format is at the lowest memory address. This
setting means that the decimal formats will be stored using the same
ordering as binary integer and floating-point formats on the same machine,
and also allows much faster conversions (up to a factor of three) to and from
the decNumber internal form.

Setting DECENDIAN to 0 forces the formats to be stored using fixed, big-
endian, ordering. This is provided for compatibility with earlier versions
of the decNumber package.

A fourth compile-time parameter allows the use of 64-bit integers to improve the per-
formance of certain operations (notably multiplication and the mathematical functions),
even when DECDPUN is less than 5. (64-bit integers are required when DECDPUN is 5 or
more.) The parameter is set in the decNumberLocal.h file, and is:

DECUSE64 This must be either 1 or 0. If 1, which is recommended, 64-bit integers will
be used for most multiplications and mathematical functions when
DECDPUN<=4, and for most operations when DECDPUN>4. If set to 0, 64-bit
integer support is not used when DECDPUN<=4, and the maximum value for
DECDPUN is then 4.

Three further compile-time parameters control the inclusion of extra code which provides
for full checking of input arguments, run-time internal tracing control, and storage allo-
cation auditing. These options are usually disabled, for best performance, but are useful
for testing and when introducing new conversion routines, etc. These parameters are all
set in the decNumberLocal.h file, and are:

DECCHECK This must be either 1 or 0. If 1, code which checks input structure refer-
ences will be included in the module. This checks that the structure ref-
erences are not NULL, and that they refer to valid (internally consistent in
the current context) structures. If an invalid reference is detected, the
DEC_Invalid_operation status bit is set (which may cause a trap), and any
result will be a valid number of undefined value. This option is useful for
verifying programs which construct decNumber structures explicitly.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 42

Some operations take more than twice as long with this checking enabled,
so it is normally assumed that all decNumbers are valid and DECCHECK is
set to 0.

DECALLOC This must be either 1 or 0. If 1, all dynamic storage usage is audited and
extra space is allocated to enable buffer overflow corruption checks. The
cost of these checks is fairly small, but the setting should normally be left
as 0 unless changes are being made to the decNumber.c source file.

DECTRACE This must be either 1 or 0. If 1, certain critical values are traced (using
printf) as operations take place. This is intended for development use
only, so again should normally be left as 0.

A final compile-time parameter enables the inclusion of extra code which implements and
enforces the subset arithmetic defined by ANSI X3.274. This option should be disabled,
for best performance, unless the subset arithmetic is required. The parameter is set in
the decContext.h file, and is:

DECSUBSET This must be either 1 or 0. If 1, subset arithmetic is enabled. This setting
includes the extended flag in the decContext structure and all code which
depends on that flag. Setting DECSUBSET to 0 improves the performance of
many operations by 10%–20%.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 43

Appendix – Changes

This appendix documents changes since the first (internal) release of this document
(Draft 1.50, 21 Feb 2001).

Changes in Draft 1.60 (9 July 2001)

• The significand of a number has been renamed from integer to coefficient, to remove
possible ambiguities.

• The decNumberRescale function has been redefined to match the base specification.
In particular its rhs now specifies the new exponent directly, rather than as a
negated exponent.

• In general, all functions now return a reference to their primary result structure.

• The decPackedToNumber function now handles only “classic” Packed Decimal format
(there must be a sign nibble, which must be the final nibble of the packed bytes).
This improved conversion speed by a factor of two.

• Minor clarifications and editorial changes have been made.

Changes in Draft 1.65 (25 September 2001)

• The rounding modes DEC_ROUND_CEILING and DEC_ROUND_FLOOR have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.00 (4 December 2001)

This is the first public release of this document.

• The decDoubleToSingle function will now round the value of the decDouble number
if it has more than 15 digits.

• The decNumberToInteger, decNumberRemainderNear, and decNumberVersion functions
have been added.

• Relatively minor changes have been made throughout to reflect support for the
extended specification.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 44

Changes in Version 2.11 (25 March 2002)

• The header files have been reorganized in order to move private type names (such
as Int and Flag) out of the external interface header files. In the external interface,
integer types now use the stdint.h names from C99.

• All but one of the compile-time parameters have been moved to the “internal”
decNumberLocal.h header file, and so are described in a new section (see page 40).

• The decNumberAbs, decNumberMax, and decNumberMin functions have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.12 (23 April 2002)

• The decNumberTrim function has been added.

• The decNumberRescale function has been updated to match changed specifications;
it now sets the exponent as requested even for zero values.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.15 (5 July 2002)
The package has been updated to reflect the changes included in the combined arithmetic
specification. These preserve more digits of the coefficient together with extended zero
values if extended in the context is 1. Notably:

• The decNumberDivide and decNumberPower functions do not remove trailing zeros
after the operation. (The decNumberTrim function can be used to effect this, if
required.)

• A non-zero exponent on a zero value is now possible and is preserved in a manner
consistent with other numbers (that is, zero is no longer a special case).

• The decPackedToNumber function has been enhanced to allow zeros with non-zero
exponents to be converted without loss of information.

Changes in Version 2.17 (1 September 2002)

• The decNumberFromString, decSingleFromString, and decDoubleFromString functions
will now round the coefficient of a number to fit, if necessary. They also now accept
subnormal values and preserve the exponent of a 0. If an overflow or underflow
occurs, the DEC_Overflow or DEC_Underflow conditions are raised, respectively.

• The package has been corrected to ensure that subnormal values are no more precise
than permitted by IEEE 854.

• The underflow condition is now raised according to the IEEE 854 untrapped under-
flow criteria (instead of according to the IEEE 854 trapped criteria). That is,
underflow is now only raised when a result is both subnormal and inexact.

• The DEC_Subnormal condition has been added so that subnormal results can be
detected even if no Underflow condition is raised.

• Minor clarifications and editorial changes have been made.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 45

Changes in Version 2.28 (1 November 2002)

• The decNumberNormalize function has been added, as an operator. This makes the
coefficient of a number as short as possible while maintaining its numerical value.

• The decNumberSquareRoot function has been added. This returns the exact square
root of a number, rounded to the specified precision and normalized.

• When the extended setting is 1, long operands are used without input rounding, to
give a correctly rounded result (without double rounding). The DEC_Lost_digits flag
can therefore only be set when extended is 0.

• Minor editorial changes have been made.

Changes in Version 3.04 (22 February 2003)

The major change in decNumber version 3 is the replacement of the decSingle and
decDouble formats by the three new formats decimal32, decimal64, and decimal128. These
formats are now included in an unapproved draft of the proposed IEEE-SA 754 standard.
However, they are still subject to change; use at your own risk.

Related and other enhancements include:

• The exponent minimum field, emin, has been added to the decContext structure.
This allows the unbalanced exponents used in the new formats.

• The exponent clamping flag, clamp, has been added to the decContext structure. This
provides explicit exponent clamping as used in the new formats.

• A new condition flag, DEC_Clamped has been introduced. This reports any situation
where the exponent of a finite result has been limited to fit in the available exponent
range.

• The header file bcd2dpd.h has been renamed decDPD.h to better describe its func-
tion.

• The DECSUBSET tuning parameter has been added. This controls the inclusion of the
code and flags required for subset arithmetic; when set to 0, the performance of
many operations is improved by 10%–20%.

• Double rounding which was possible with certain subnormal results has been elim-
inated.

• Minor editorial changes have been made.

Changes in Version 3.09 (23 July 2003)

This version implements some minor changes which track changes agreed by the IEEE
754 revision committee.

• The decNumberQuantize function has been added. Its function is identical to
decNumberRescale except that the second argument specifies the target exponent
“by example” rather than by value.

• The decNumberQuantize and decNumberRescale functions now report
DEC_Invalid_operation rather than DEC_Overflow if the result cannot fit.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 46

• The decNumberToInteger function has been replaced by the decNumberToIntegralValue
function. This implements the new rules for round-to-integral-value agreed by IEEE
754r. Notably:

• the exponent is only set to zero if the operand had a negative exponent

• the Inexact flag is not set.

• The decNumberSquareRoot function no longer normalizes. Its preferred exponent is
floor(operand.exponent/2).

Changes in Version 3.12 (1 September 2003)

This version adds a new function and slightly reorganizes the decimalnn modules.

• The decNumberSameQuantum function has been added. This tests whether two
numbers have the same exponents.

• The decimal128.h, decimal64.h, and decimal32.h header files now check that (if
more than one is included) they are included in order of reducing size. This makes
it harder to use a decNumber structure which is too small.

• . The shared DPD pack/unpack routines have been
moved from decimal32.c to decimal64.c, because the latter is more likely to be
used alone.

Changes in Version 3.16 (2 October 2003)

• NaN values may now use the coefficient to convey diagnostic information, and NaN
sign information is propagated along with that information.

• The decNumberQuantize function now allows both arguments to be infinite, and
treats NaNs in the same way as other functions.

Changes in Version 3.19 (21 November 2003)

• The decNumberIsInfinite, decNumberIsNaN, decNumberIsNegative, and decNumberIsZero
functions have been added to simplify tests on numbers. These functions are cur-
rently implemented as macros.

Changes in Version 3.24 (25 August 2004)

• The decNumberMax and decNumberMin functions have been altered to conform to the
maxnum and minnum functions proposed by IEEE 754r. That is, a total ordering
is provided for numerical comparisons, and if one operand is a quiet NaN but the
other is a number then the number is returned.

• The decimal64FromString function (and the same function for the other two formats)
now uses the rounding mode provided in the context structure.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 47

Changes in Version 3.25 (15 June 2005)

• Arguments to functions which are “input only” are now decorated with the const
keyword to make the functions easier and safer to call from a C++ wrapper class.

• The performance of arithmetic when DECDPUN<=3 has been improved substan-
tially; DECDPUN==3 performance is now similar to DECDPUN==4.

• An error in the decNumberRescale and decNumberQuantize functions has been
corrected. This returned 1.000 instead of NaN for quantize(0.9998, 0.001) under a
context with precision=3.

Changes in Version 3.32 (12 December 2005)

• The decNumberExp function has been added. This returns e raised to the power of
the operand.

• The decNumberLn and decNumberLog10 functions have been added. These return the
natural logarithm (logarithm in base e) or the logarithm in the base ten of the
operand, respectively.

• The decNumberPower function has been enhanced by removing restrictions; notably
it now allows raising numbers to non-integer powers.

• The DECENDIAN tuning parameter (see page 42) has been added. This allows the
compressed decimal formats (see page 33) to be stored using platform-dependent
ordering for better performance and compatibility with binary formats. This
parameter can be set to 0 to get the same (big-endian) ordering on all platforms, as
in earlier versions of the decNumber package.

• The DECUSE64 tuning parameter (see page 42) has been added. This allows 64-bit
integers to be used to improve the performance of operations when DECDPUN<=4.
This parameter can be set to 0 to ensure only 32-bit integers are used when
DECDPUN<=4.

• The compressed decimal formats are widely used with the decNumber package, so
the initial setting of DECDPUN has been changed to 3 (from 4), and DECENDIAN and
DECUSE64 are both set to 1 (to use platform ordering and 64-bit arithmetic). These
settings significantly improve the speed of conversions to and from the compressed
formats and the speed of multiplications and other operations.

• Minor clarifications and editorial changes have been made.

Changes in Version 3.37 (22 November 2006)

• The decNumberCompareTotal (total ordering comparison), decNumberIsQNaN, and
decNumberIsSNaN functions have been added.

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 48

Index

// comments in C programs 3
.c (source) files 1
.h (header) files 1

6

64-bit integers 3, 42

A

abs operation 25
addition 25, 29
adjusted exponent 14, 20
ANSI standard

for REXX 2
IEEE 854-1987 2
X3.274-1996 2

arguments
corrupt 23
modification of 23
passed by reference 13

arithmetic
decimal 1
decNumber 25
specification 1

auditing, of storage allocation 43

B

BCD
See Binary Coded Decimal

big-endian 33, 42
Binary Coded Decimal 1, 2, 37
bits

in a nibble 37
in decNumber 20

bytes
in decimal128 33
in decimal32 33
in decimal64 33

C

checking, of arguments 23, 42
clamp 46

in decContext 15
Clamped condition 16
code parameter

DECALLOC 43
DECCHECK 42
DECTRACE 43

coefficient
in decNumber 20

comparison 25, 26, 27
compile-time parameters 41
compound interest 6
compressed formats 1, 10
constants

naming convention 13
conversion

decimal128 to number 35

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 49

decimal128 to string 35
decimal32 to number 35
decimal32 to string 35
decimal64 to number 35
decimal64 to string 35
decNumber 23
number to decimal128 35
number to decimal32 35
number to decimal64 35
number to packed 38
number to string 24
packed to number 38
string to decimal128 34
string to decimal32 34
string to decimal64 34
string to number 23

copying numbers 30
corrupt arguments 23

D

DEC_Clamped condition 16
DEC_Division_impossible 26, 28
DEC_Errors bits 7, 8, 16, 23
DEC_Inexact condition 7, 16
DEC_Invalid_operation condition 28, 29
DEC_Lost_digits condition 16
DEC_ROUND_CEILING 14
DEC_ROUND_DOWN 14
DEC_ROUND_FLOOR 14
DEC_ROUND_HALF_DOWN 14
DEC_ROUND_HALF_EVEN 15
DEC_ROUND_HALF_UP 15
DEC_ROUND_UP 15
DEC_Rounded condition 7, 16
DEC_Subnormal condition 16
DECALLOC code parameter 43
DECBUFFER tuning parameter 41
DECCHECK code parameter 23, 42
decContext 1

clamp 15
digits 14
emax 14
emin 14
extended 15
module 14
round 14
status 15

traps 15
decContext.h file 16, 43
decContextDefault function 17
decContextSetStatus function 17
decContextSetStatusFromString
function 18

decContextStatusToString function 18
decDPD.h file 34
DECDPUN tuning parameter 21, 22, 41
DECENDIAN tuning parameter 33, 42
decimal arithmetic 1

using 3
decimal128 2

bytes 33
module 33
using 11

decimal128.h file 33
decimal128FromNumber function 35
decimal128FromString function 34
decimal128ToEngString function 35
decimal128ToNumber function 35
decimal128ToString function 35
decimal32 2

bytes 33
module 33
using 11

decimal32.h file 33
decimal32FromNumber function 35
decimal32FromString function 34
decimal32ToEngString function 35
decimal32ToNumber function 35
decimal32ToString function 35
decimal64 2

bytes 33
module 33
using 11

decimal64 numbers 10
decimal64.h file 33
decimal64FromNumber function 35
decimal64FromString function 34
decimal64ToEngString function 35
decimal64ToNumber function 35
decimal64ToString function 35
DECNEG sign bit 22
decNumber 1

bits 20
coefficient 20
digits 20
examples 21
exponent 20

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 50

lsu 21
module 20
msu 21
sign 20
significand 20
size 20
special values 20
version 31

decNumber.h file 5, 41
decNumberAbs function 25
decNumberAdd function 25
decNumberCompare function 25
decNumberCompareTotal function 25
decNumberCopy function 30
decNumberDivide function 26
decNumberDivideInteger function 26
decNumberExp function 26
decNumberFromString function 23
decNumberIsInfinite function 30
decNumberIsNaN function 30
decNumberIsNegative function 30
decNumberIsQNaN function 31
decNumberIsSNaN function 31
decNumberIsZero function 31
decNumberLn function 26
decNumberLocal.h file 13, 41, 42
decNumberLog10 function 26
decNumberMax function 26
decNumberMin function 27
decNumberMinus function 27
decNumberMultiply function 27
decNumberNormalize function 27
decNumberPlus function 27
decNumberPower function 27
decNumberQuantize function 27
decNumberRemainder function 28
decNumberRemainderNear function 28
decNumberRescale function 28
decNumberSameQuantum function 29
decNumberSquareRoot function 29
decNumberSubtract function 29
decNumberToEngString function 24
decNumberToIntegralValue 47
decNumberToIntegralValue function 29
decNumberToString function 24
decNumberTrim function 31
decNumberUnit type 21, 42
decNumberVersion function 31
decNumberZero function 32
DECNUMDIGITS constant 10, 11, 21

set by decimal128.h 33
set by decimal32.h 33
set by decimal64.h 33
set by decPacked.h 37

decPacked 2
module 37
using 12

decPacked.h file 37
decPackedFromNumber function 38
decPackedToNumber function 38
DECSUBSET tuning parameter 16, 43
DECTRACE code parameter 43
DECUSE64 tuning parameter 3, 42
Densely Packed Decimal 33, 34, 41

coding and decoding 33
development aids 41
digits

in decContext 14
in decNumber 20

division 26, 28
DPD

See Densely Packed Decimal
dynamic storage 13, 22, 41, 43

auditing 43

E

e 26
emax

in decContext 14
emin 46

in decContext 14
endian 33, 42
engineering notation 24, 35
error handling 15

active 8
passive 7
with signal 8

example 3
active error handling 8
compound interest 6
compressed formats 10
decimal64 numbers 10
decNumber 21
decPacked module 12
Example 1 5
Example 2 6
Example 3 7

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 51

Example 4 8
Example 5 10
Example 6 12
passive error handling 7
simple addition 5
special values 22

exceptional conditions 15
exp operation 26
exponent

adjusted 14, 20
checking 29
in decNumber 20
maximum 14
minimum 14
setting 27, 28

exponentiation 26, 27
extended

in decContext 15

F

features, extra 40
file

header 1
source 1

functions
arithmetic 25
conversions 23
mathematical 25
naming convention 13
utilities 30

G

General Decimal Arithmetic 1

H

header file 1
decContext 16
decimal128 33
decimal32 33
decimal64 33
decNumber 22

decNumberLocal 13, 41, 42
decPacked 37

I

IEEE standard 854-1987 2
Inexact condition 7, 16
infinite results 23
infinity 20
initializing numbers 23, 32
int data type 13
integer rounding 29

L

little-endian 33, 42
ln operation 26
log10 operation 26
logarithm

base 10 26
base e 26
natural 26

long data type 13
longjmp function 8
Lost digits condition 16
lsu, in decNumber 21

M

mathematical functions 25
max operation 26
maximum exponent 14
min operation 27
minimum exponent 14
minus operation 27
modification of arguments 23
module 13

decContext 14
decimal128 33
decimal32 33
decimal64 33
decNumber 20
decPacked 37
naming convention 13

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 52

reentrancy 13
monadic operators 25
msu, in decNumber 21
multiplication 27

N

naming convention
constants 13
functions 13
modules 13

NaN 20
diagnostic 20
quiet 20
results 23
signaling 20

negation 27
nibble 37
normal values 14
normalizing numbers 27, 46

O

options, extra 40

P

Packed Decimal 1, 2, 37
parameters

compile-time 40
tuning 22, 41

performance tuning 41
plus operation 27
power operator 27
prefix

abs 25
minus 27
plus 27

printf function 5

Q

quantizing 27, 29
quiet NaN 20

R

reentrant modules 13
references, to arguments 13
remainder 28
rescaling 27, 28, 29
results

rounding of 16
undefined 23

root, square 29
round

See also rounding
in decContext 14

round-to-integer operation 29
Rounded condition 7, 16
rounding

detection of 16
enumeration 14
to integer 29
using decNumberPlus 27

S

scale 2, 37
checking 29
setting 27, 28

scientific notation 24, 35
setjmp function 9
SIGFPE

implementation issues 4
signal 8, 9, 15

sign
DECNEG bit 22
in decNumber 20

signal
function 9
handler 8

signaling NaN 20
significand

See also coefficient

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 53

in decNumber 20
size, of decNumber 20
source file 1

decContext 17
decimal128 34
decimal32 34
decimal64 34
decNumber 23
decPacked 38

special values 15, 20, 22
in decNumber 20

specification
arithmetic 1

speed of operations 22, 41
square root operation 29, 46, 47
status

in decContext 15
stdint.h file 3
stdio.h file 5
storage allocation 43

auditing 43
Subnormal condition 16
subnormal values 14, 20, 24, 45
subset arithmetic, enabling 43

T

test aids 41
testing numbers 30, 31
trailing zeros, removing 27, 31
traps 15

in decContext 15

trimming numbers 31
tuning parameter 13, 41

DECBUFFER 41
DECDPUN 22, 41
DECENDIAN 33, 42
DECSUBSET 16, 43
DECUSE64 42

U

undefined results 23
unit

in decNumber 21
size of 21, 22, 41

User’s Guide 3
utilities

decNumber 30

V

value of a number 20
version, of decNumber 31

Z

zero decNumber 21
zeroing numbers 32
zeros, removing trailing 27, 31

Version 3.37 Copyright (c) IBM Corporation 2006. All rights reserved. 54

